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I Liczby rzeczywiste, zbiory, wyrażenia algebraiczne

1.Błąd bezwzględny i względny.
Oznaczamy:
r – wielkość rzeczywista,
p – wielkość przybliżona.

Błąd bezwzględny: BB = 𝑟 − 𝑝| |

Błąd względny: BW =
𝑟−𝑝| |

𝑟| |

Błąd względny procentowy: BW% =
𝑟−𝑝| |

𝑟| | · 100%

Przykład 1.
Rzeczywista wysokość drzewa wynosi 5,6 m. Jacek oszacował wysokość drzewa i
otrzymał wynik 5,4 m. Oblicz błąd bezwzględny, błąd względny oraz błąd względny
procentowy pomiaru Jacka.

Rozwiązanie:
Oznaczamy:
r = 5,6m
p = 5,4m

BB = = = 0,2m𝑟 − 𝑝| | 5, 6 − 5, 4| |

BW = = = 0,0357
𝑟−𝑝| |

𝑟| |
5,6−5,4| |

5,6| |

BW% = = 0,0357 = 3,57%
𝑟−𝑝| |

𝑟| | · 100% = 5,6−5,4| |
5,6| | · 100% · 100%

2. Średnia prędkość

Wzór na prędkość to stosunek drogi do czasu, który możemy opisać wzorem: v =
𝑠
𝑡

Przekształcenie wzoru na prędkość na wzór na drogę (s):

v = /𝑠
𝑡 · 𝑡

s = v · 𝑡

Przekształcenie wzoru na prędkość na wzór na czas (t):

v = /𝑠
𝑡 · 𝑡

v = s / : v· 𝑡

t =
𝑠
𝑣

UWAGA: Nie można liczyć średniej prędkości ze średniej arytmetycznej.
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Przykład 1.
Obliczyć średnią prędkość jazdy samochodu, który dystans 100km pokonał w
2 godziny.

Rozwiązanie:
Oznaczamy:
s = 100km
t = 2h

v =
𝑠
𝑡

v =
100𝑘𝑚

2ℎ

v = 50
𝑘𝑚
ℎ

Przykład 2.
Oblicz średnią prędkość jazdy samochodu, który dystans 30 km pokonał 15 minut

Wynik podaj w
𝑘𝑚
ℎ

Rozwiązanie:
UWAGA: Pamiętaj o zamianie jednostek.
1h = 60min
15min = h = h15

60
1
4

Oznaczamy:
s = 30km
t = 15min = h1

4

v =
𝑠
𝑡

v =
30𝑘𝑚

1
4 ℎ

v = 30km : h1
4

v = 30km : 4 1
ℎ

v = 120 𝑘𝑚
ℎ
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3. Zapis liczb
Liczba parzysta: x = 2n
Liczba nieparzysta: x = 2n +1
Liczba podzielna przez 5 : x = 5n
Liczba, która przy dzieleniu przez 7 daje resztę 3: x = 7n + 3
Dwie kolejne liczby parzyste: 2n, 2n +2
Dwie kolejne liczby nieparzyste: 2n +1, 2n +3
(liczba n jest liczbą całkowitą)

Przykład 1.
Wykaż że dla każdej liczby naturalnej n, liczba 6n² + 9n + 8 przy dzieleniu przez 3
daje resztę 2

Rozwiązanie:
a) Mamy udowodnić to dla liczby “n” więc wyciągamy ją przed nawias
n (6n + 9) + 8
b) Przy dzieleniu przez 3, wyciągamy przed nawias cyfrę 3
n (6n + 9) + 8 3n (2n + 3) + 8→
c) Daje resztę 2, ponieważ

3n (2n + 3) + 8 3n (2n +3) +→ 23

lub
3n (2n + 3) + 8 3n (2n +3) + 2→  ·  2 · 2

4. Jakim procentem liczby a jest liczba b?

100%
𝑏
𝑎  ·

Przykład 1.
Jakim procentem liczby 60 jest liczba 25?

Rozwiązanie:

100% = 41 %
25
60  · 2

3  
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5. Procent składany- najczęściej związany z lokatami bankowymi.
K – kapitał końcowy,

– kapitał początkowy,𝐾
𝑜

p – roczna stopa procentowa,
n – liczba lat trwania lokaty,
m – liczba okresów kapitalizacji w ciągu roku.

Wzór bez podatku: K = (1 + )𝐾
𝑜

· 𝑝
100·𝑚

Wzór z podatkiem 20%: K = (1 + 0,8 )𝐾
𝑜

· · 𝑝
100·𝑚

𝑚·𝑛

Przykład 1.
Wpłacamy 10 000 zł na dwuletnią lokatę do banku. Roczna stopa procentowa
wynosi 4%. Oblicz kapitał po zakończeniu lokaty w przypadku, gdy:
a) odsetki kapitalizowane są co roku,
b) odsetki kapitalizowane są co pół roku,
c) odsetki kapitalizowane są co kwartał.
Uwzględnij 20-procentowy podatek od odsetek.

Rozwiązanie:
a)
K- kapitał końcowy

= 10 000 zł𝐾
𝑜

p = 4, n = 2, m = 1

K = 10 000 (1 + 0,8 ) = 10 650,24 zł· · 4
100·1

1·2

b)
K- kapitał końcowy

= 10 000 zł𝐾
𝑜

p = 4, n = 2, m = 2

K = 10 000 (1 + 0,8 ) = 10 655,52 zł· · 4
100·2

2·2

c)
K- kapitał końcowy

= 10 000 zł𝐾
𝑜

p = 4, n = 2, m = 4

K = 10 000 (1 + 0,8 ) = 10 658,21 zł· · 4
100·4

4·2
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6. Usuwanie niewymierności z mianownika ułamka

Przykłady.

a) = =2
3

2
3

· 3
3

2 3
3

b) = = 2
3 5

2
3 5

·
3 5
3 5

· 
3 5
3 5

2 3 25
5

c) = = = =2
3+1

2
3+1

· 3−1
3−1

2 ( 3−1)
3−1

2 ( 3−1)
2 3 − 1

7. Działania na pierwiastkach

=
𝑚 𝑛 𝑎 𝑚·𝑛 𝑎

=𝑛 𝑎 · 𝑚 𝑏
𝑚·𝑛

𝑎𝑚𝑏𝑛

Przykłady:

=
4 5 7 20 7

=3 2 · 4 3
12

2433

8. Liczba przeciwna i liczba odwrotna

Dana liczba Liczba przeciwna Liczba odwrotna

x -x 1
𝑥

5 -5 1
5

- 3
4 - 3

4 - 4
3

3 - 3 =1
3

3
3
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9. NWD i NWW
NWD- największy wspólny dzielnik
NWW- najmniejsza wspólna wielokrotność

Przykład 1.
Wyznacz NWD i NWW liczb 72 i 60.

Rozwiązanie:
Rozkładamy liczby na czynniki pierwsze:
72 2
36 2
18 2
9 3
3 3
1

60 2
30 2
15 3
5 5
1

Czynniki powtarzające się w obu liczbach
NWD jest iloczynem czynników powtarzających się, czyli
NWD (72, 60) = 2 2 3 = 12· ·
NWW jest iloczynem jednej liczby i czynników nie powtarzających się z drugiej
liczby, czyli
NWW (72, 60) = 2 2 2 3 3 5 = 72 5 = 60 2 3 = 360· · · · · · · ·
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10. Jednostki

1 km = 1000 m = 10 000 dm = 100 000 cm = 1 000 000 mm

1 = 1 000 000 = 100 000 000 = 10 000 000 000𝑘𝑚2 𝑚2 𝑑𝑚2 𝑐𝑚2

1 ha = 10 000 𝑚2

1 ha = 100 a

1 a = 100 𝑚2

1 kg = 100 dag = 1000 g
1 t = 1000 kg (1 tona = 1000 kg)

1 l = 1 = 1 000 (1 litr = 1 )𝑑𝑚3 𝑐𝑚3 𝑑𝑚3

II Cechy podzielności liczb

1. Liczba jest podzielna:
przez 2, jeżeli jest liczbą parzystą (cyfrą jedności jest 0, 2, 4, 6, lub 8)
przez 3, jeżeli suma cyfr tej liczby jest podzielna przez 3
przez 4, jeżeli dwie ostatnie cyfry tworzą liczbę podzielną przez 4
przez 5, jeżeli cyfrą jedności jest 5 lub 0
przez 8, jeżeli liczba zapisana trzema ostatnimi jej cyframi dzieli się przez 8
przez 9, jeżeli suma cyfr tej liczby jest podzielna przez 9
przez 10, jeżeli cyfrą jedności jest 0
przez 25, jeżeli dwie ostatnie cyfry tej liczby to 00, 25, 50 lub 75
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III Funkcje

1. Definicje
Oś odciętych - to oś x-ów
Oś rzędnych - to oś y-ów
Miejsce zerowe - to argument x, dla którego funkcja przecina się z osią x-ów. Gdy
mamy wzór funkcji f(x)=wzór, to miejsca zerowe wyliczamy rozwiązując równanie:
wzór=0
Dziedzina - to zbiór wszystkich x-ów funkcji
Zbiór wartości - to zbiór wszystkich y-ów funkcji

2. Numery ćwiartek w układzie współrzędnych

3. Przesuwanie wykresów funkcji
g(x) = f (x) + q przesunięcie o q jednostek w górę na osi OY→  
g(x) = f (x) - q przesunięcie o q jednostek w dół na osi OY→  
g(x) = f (x - p) przesunięcie o p jednostek w prawo na osi OX→  
g(x) = f (x + p) przesunięcie o p jednostek w lewo na osi OX→  
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Przykład 1.
g(x) = f (x) + 3

Rozwiązanie:

Przykład 2.
g(x) = f (x) - 1

Rozwiązanie:

Przykład 3.
g(x) = f (x - 1)

Rozwiązanie:
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Przykład 4.
g(x) = f (x + 2)

Rozwiązanie:

4. Odbicie lustrzane wykresów funkcji
Rysując wykres funkcji y = - f (x) na podstawie wykresu y = f (x), odbijamy ten
wykres symetrycznie względem osi OX

Rysując wykres funkcji y = f (-x) na podstawie wykresu y = f (x), odbijamy ten wykres
symetrycznie względem osi OY

Przykład 1.
Na podstawie wykresu funkcji y = f (x) na rysunku, narysuj wykres funkcji y = - f (x)

Rozwiązanie:
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Przykład 2.
Na podstawie wykresu funkcji y = f (x) na rysunku, narysuj wykres funkcji y = f (-x)

Rozwiązanie:

IV Geometria płaska

1. Wzór na przekątna kwadratu

a 2

2. Własność dla trójkąta równobocznego

R = 2r

R =
2
3 ℎ

r = 1
3 ℎ

h - wysokość trójkąta równobocznego
Wysokości w trójkącie równobocznym przecinają
się w stosunku 2 : 1
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3. Własność dla trójkąta prostokątnego

Środek okręgu opisanego leży dokładnie na
środku przeciwprostokątnej

4. Własności trójkąta ,30◦ 60◦,  90◦

a 3

a 3

V Kąty w graniastosłupach i ostrosłupach

1. Kąty w graniastosłupach

a) kąt nachylenia przekątnej graniastosłupa do płaszczyzny podstawy
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b) kąt nachylenia przekątnej ściany bocznej do krawędzi podstawy

c) kąt nachylenia przekątnej ściany bocznej do krawędzi bocznej

d) kąt między przekątną graniastosłupa a krawędzią boczną

e) kąt między przekątnymi sąsiednich ścian bocznych
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2. Kąty w ostrosłupach

Ostrosłup prawidłowy czworokątny Ostrosłup prawidłowy trójkątny

kąt nachylenia krawędzi bocznej do płaszczyzny podstawy

kąt nachylenia ściany bocznej do płaszczyzny podstawy
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kąt między wysokością ostrosłupa a krawędzią boczną

kąt między wysokością ostrosłupa a wysokością ściany bocznej
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VI Znaki matematyczne

p q∧ p i q (koniunkcja)

p q∨ p lub q (alternatywa)

⊘ zbiór pusty

a A∈ element a należy do zbioru A

A B⊂ zbiór A jest podzbiorem B (inkluzja)

A B∪ suma zbiorów A i B

A B∩ część wspólna zbiorów A i B (iloczyn, przekrój)

A / B różnica zbiorów A i B

[a, b],
przedział domknięty o początku a i końcu b

n! n silnia

b𝑙𝑜𝑔
𝑎

logarytm liczby b przy podstawie a

log b logarytm dziesiętny ( b)𝑙𝑜𝑔
10

𝑎𝑛 a do n-tej potęgi

 𝑛 𝑎 pierwiastek n-tego stopnia z a

𝑎 pierwiastek kwadratowy z a

∞ nieskończoność

N zbiór liczb naturalnych

Z zbiór liczb całkowitych

Q zbiór liczb wymiernych

R zbiór liczb rzeczywistych

P (A) prawdopodobieństwo zdarzenia A
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